
The WACC Language Specification

Second Year Computing Laboratory
Department of Computing
Imperial College London

1 What is WACC?

WACC (pronounced “whack”) is a simple variant on the While family of languages encountered in many
program reasoning/verification courses (in particular in the Models of Computation course taught to
our 2nd year undergraduates). It features all of the common language constructs you would expect of a
While-like language, such as program variables, simple expressions, conditional branching, looping and
no-ops. It also features a rich set of extra constructs, such as simple types, functions, arrays and basic
tuple creation on the heap.

The WACC language is intended to help unify the material taught in our more theoretical courses
(such as Models of Computation) with the material taught in our more practical courses (such as Com-
pilers). The core of the language should be simple enough to reason about and the extensions should
pose some interesting challenges and design choices for anyone implementing it.

2 WACC Language Syntax

We give the syntax of the WACC language in Backus-Naur Form (BNF) extended with some basic
regular expression notation that simplifies the presentation:

� (x-y) stands for ‘range’, meaning any value from x to y inclusive;

� (x)? stands for ‘optional’, meaning that x can occur zero or one times;

� (x)+ stands for ‘repeatable’, meaning that x can occur one or more times;

� (x)* stands for ‘optional and repeatable’, meaning that x can occur zero or more times.

2.1 BNF

〈program〉 ::= ‘begin’ 〈func〉* 〈stat〉 ‘end’

〈func〉 ::= 〈type〉 〈ident〉 ‘(’ 〈param-list〉? ‘)’ ‘is’ 〈stat〉 ‘end’

〈param-list〉 ::= 〈param〉 (‘,’ 〈param〉)*

〈param〉 ::= 〈type〉 〈ident〉

〈stat〉 ::= ‘skip’
| 〈type〉 〈ident〉 ‘=’ 〈assign-rhs〉
| 〈assign-lhs〉 ‘=’ 〈assign-rhs〉
| ‘read’ 〈assign-lhs〉
| ‘free’ 〈expr〉
| ‘return’ 〈expr〉
| ‘exit’ 〈expr〉
| ‘print’ 〈expr〉
| ‘println’ 〈expr〉

1

| ‘if’ 〈expr〉 ‘then’ 〈stat〉 ‘else’ 〈stat〉 ‘fi’
| ‘while’ 〈expr〉 ‘do’ 〈stat〉 ‘done’
| ‘begin’ 〈stat〉 ‘end’
| 〈stat〉 ‘;’ 〈stat〉

〈assign-lhs〉 ::= 〈ident〉
| 〈array-elem〉
| 〈pair-elem〉

〈assign-rhs〉 ::= 〈expr〉
| 〈array-liter〉
| ‘newpair’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| 〈pair-elem〉
| ‘call’ 〈ident〉 ‘(’ 〈arg-list〉? ‘)’

〈arg-list〉 ::= 〈expr〉 (‘,’ 〈expr〉)*

〈pair-elem〉 ::= ‘fst’ 〈expr〉
| ‘snd’ 〈expr〉

〈type〉 ::= 〈base-type〉
| 〈array-type〉
| 〈pair-type〉

〈base-type〉 ::= ‘int’
| ‘bool’
| ‘char’
| ‘string’

〈array-type〉 ::= 〈type〉 ‘[’ ‘]’

〈pair-type〉 ::= ‘pair’ ‘(’ 〈pair-elem-type〉 ‘,’ 〈pair-elem-type〉 ‘)’

〈pair-elem-type〉 ::= 〈base-type〉
| 〈array-type〉
| ‘pair’

〈expr〉 ::= 〈int-liter〉
| 〈bool-liter〉
| 〈char-liter〉
| 〈str-liter〉
| 〈pair-liter〉
| 〈ident〉
| 〈array-elem〉
| 〈unary-oper〉 〈expr〉
| 〈expr〉 〈binary-oper〉 〈expr〉
| ‘(’ 〈expr〉 ‘)’

〈unary-oper〉 ::= ‘!’ | ‘-’ | ‘len’ | ‘ord’ | ‘chr’

〈binary-oper〉 ::= ‘*’ | ‘/’ | ‘%’ | ‘+’ | ‘-’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘==’ | ‘!=’ | ‘&&’ | ‘||’

〈ident〉 ::= (‘ ’ | ‘a’-‘z’ | ‘A’-‘Z’) (‘ ’ | ‘a’-‘z’ | ‘A’-‘Z’ | ‘0’-‘9’)*

〈array-elem〉 ::= 〈ident〉 (‘[’ 〈expr〉 ‘]’)+

2

〈int-liter〉 ::= 〈int-sign〉? 〈digit〉+

〈digit〉 ::= (‘0’-‘9’)

〈int-sign〉 ::= ‘+’ | ‘-’

〈bool-liter〉 ::= ‘true’ | ‘false’

〈char-liter〉 ::= ‘’’ 〈character〉 ‘’’

〈str-liter〉 ::= ‘"’ 〈character〉* ‘"’

〈character〉 ::= any-ASCII-character-except-‘\’-‘’’-‘"’

| ‘\’ 〈escaped-char〉

〈escaped-char〉 ::= ‘0’ | ‘b’ | ‘t’ | ‘n’ | ‘f’ | ‘r’ | ‘"’ | ‘’’ | ‘\’

〈array-liter〉 ::= ‘[’ (〈expr〉 (‘,’ 〈expr〉)*)? ‘]’

〈pair-liter〉 ::= ‘null’

〈comment〉 ::= ‘#’ (any-character-except-EOL)* 〈EOL〉

3 WACC Language Semantics

We now go through each of the language components and explain their behaviour and purpose in more
detail.

3.1 Types

The WACC language is both statically and strongly typed.

� Static, in that, once declared, the type of a variable is fixed for the duration of the program.

� Strong, in that the compiler should not coerce between types.

There is also no explicit typecasting.

Basic Types: The basic types in the WACC language are:

� int: The Integer type. Integers in the WACC language can take any value from −231 to 231 − 1
inclusive.

� bool: The Boolean type (true or false).

� char: The Character type. The WACC language supports only the ASCII characters.

� string: The String type.

We write ‘T’ to denote an arbitrary type.

Arrays: As well as the basic types given above, the WACC language also supports the array type. We
write ‘T[]’ to denote an array whose elements are of type ‘T’. Note that ‘T’ can be of any type, including
another array type, which allows for nested arrays. In the WACC language, arrays of characters are
treated like strings. Arrays are allocated on the heap. As well as their elements, each array also tracks
its length, which is set when it is created.

3

Pairs: Pairs are allocated on the heap and contain two elements that can be of any type. We write
‘pair(T1, T2)’ to donate a pair whose first element is of type ‘T1’ and second element is of type ‘T2’
(these need not be the same). Note that if either ‘T1’ or ‘T2’ is a pair type, we do not write the type
of the sub-elements. For example, a pair whose first element is an integer and whose second element is
a pair of characters is written as ‘pair(int, pair)’ and not as ‘pair(int, pair(char, char))’. It is
obvious that we lose some typing information in this way.

3.2 Program Scopes

The WACC language includes explicit scoping. Various statements introduce new program scopes, which
have an effect on the visibility of program variables.

Whenever a new variable is declared it is added to the current program scope. When a program
scope is exited, every variable created within that scope is destroyed. This means that variables are not
accessible by statements outside the scope of their creation, although they are accessible in child scopes.

The main, or global scope is created at the start of a WACC program and is exited at the end of the
program. Functions can only be created at the beginning of this global scope, but they may be called
from within any child scope.

We will see that several other program constructs, including functions, while loops and conditional
branches, introduce new program scopes during their execution.

3.3 Programs

A WACC program 〈program〉 consists of zero or more function definitions followed by the body of the
main function. The whole program is written between the ‘begin’ and ‘end’ tokens, denoting the main
or global program scope.

3.4 Function Definitions

A function definition 〈func〉 consists of a return type, a function name and zero or more typed parameters
followed by the function’s body. A function’s body, which is denoted by the ‘is’ and ‘end’ tokens, is
executed in its own scope containing only the parameters passed into the function.

Functions can only be defined at the beginning of the global scope, before the body of the main
function. Functions may, however, be both recursive and mutually recursive.

Any execution path through the body of the function should end with a ‘return’ statement whose
expression type should match the function’s return type. Otherwise, it must end with an ‘exit’ state-
ment.

3.5 Statements

A statement 〈stat〉 consists of: a no-op, a variable definition, an assignment, an input read, a memory
free, a function return, an exit call, a print command, a conditional branch, a while loop, a scope
introduction or the sequential composition of two statements.

We discuss each of these in more detail below.

No-op Statements: A no-op statement ‘skip’ does not do anything. It is used where a statement is
expected but we do not want to do anything. For example, in an if statement where we want to have
an empty else clause.

Variable Declaration Statements: A variable declaration statement creates a new program variable
in the current scope setting its static type and initial value. The statement must be given a valid WACC
type 〈type〉, a variable name 〈ident〉 and an initial assignment value 〈assign-rhs〉.

Variable names must not clash with WACC keywords or variables that have been previously declared
using the same identifier.

They can consist of letters, numbers and the underscore character, however, a variable’s identifier
cannot begin with a number.

4

The initial assignment to a variable follows all of the assignment restrictions discussed in detail in
the assignment statement section below.

A variable must be declared before being accessed or passed around as a parameter.
Any attempt to access an undeclared variable results in a compilation error (semantic).
Additionally, every use of a variable must match the type assigned to that variable when it was

declared.
A variable can only be accessed within the scope of its declaration (or any child scope) and it is

destroyed when exiting this scope. Variables must be unique within their scope, so a variable cannot be
redefined within the same scope. Variables can, however, be redefined within a child scope. In this case
the redefinition only holds within the child scope. We must adhere to the type that was specified in the
redefinition, as it does not have the same definition as the variable defined in the parent scope.

Once the child scope is exited, the redefinition of a variable is destroyed and its definition reverts
back to that of the parent scope.

Gap 1. DONE (5 marks)

Assignment Statements: An assignment statement updates its target (the left-hand side of the ‘=’)
with a new value (the right-hand side of the ‘=’). The target of an assignment can be either a program
variable, an array element or a pair element. The assignment value can be one of five possible types: an
expression, an array literal, a function call, a pair constructor or a pair element.

� If the assignment value is an expression 〈expr〉 then the target and the expression must have the
same type. The expression is then evaluated and the resulting value is copied into the target.

� If the assignment value is an array literal 〈array-liter〉 then the target and value arrays must have
the same element type, but the length can be different. The value array is then allocated on the
heap with each element initialised to the given value. After that, the reference of the value array
is copied to the reference of the target array. For more details on array literals, see the expressions
section.

� If the assignment value is a function call ‘call’ then the target and function return value must have
the same type. The number and types of the function’s arguments must also match the function’s
definition. A function is called by its name and its arguments are passed by value (for basic types)
or by reference (for arrays and pairs). When called, the function’s body is executed in a new scope,
not related to the current scope. The only declared variables are the function’s parameters, whose
types are set by the function definition and whose values are set by the function call’s arguments.
When the execution of the function body terminates, the function’s return value is then copied
into the assignment target.

� If the assignment value is pair constructor ‘newpair’ then the target must be of type ‘pair(T1, T2)’.
The pair constructor is passed two expressions that must match T1 and T2 respectively. A ‘newpair’
assignment allocates enough memory on the heap to store the pair structure and its elements. It
then initialises each element of the pair using the evaluation of the first expression for the first
element and the evaluation of the second expression for the second element. Pairs, in the WACC
language, are always used by reference, so a reference to the pair is copied into the target, rather
than the actual content of the pair.

� If the assignment value is a pair element 〈pair-elem〉 then the expression passed to the pair element
must be of type ‘pair’ and the target must have the same type as the first (or second) element of
the pair when using ‘fst’ (or ‘snd’) keyword. The pair expression is evaluated to obtain a reference
to a pair and this is dereferenced to find the corresponding pair element, which is then copied into
the target.

Read Statements: A read statement ‘read’ is a special assignment statement that takes its value
from the standard input and writes it to its argument. Unlike a general assignment statement, a read
statement can only target a program variable, an array element or a pair element. Additionally, the read
statement can only handle character or integer input.

5

The read statement determines how it will interpret the value from the standard input based on the
type of the target. For example, if the target is a variable of type ‘int’ then it will convert the input
string into an integer.

Memory Free Statements: A memory free statement ‘free’ is used to free the heap memory allo-
cated for a pair or array and its immediate content. The statement is given an expression that must be
of type ‘pair(T1, T2)’ or ‘T[]’ (for some T, T1, T2). The expression must evaluate to a valid reference
to a pair or array, otherwise a segmentation fault will occur at runtime.

If the reference is valid, then the memory for each element of the pair/array is freed, so long as the
element is not a reference to another pair or another array (i.e. free is not recursive). Then the memory
that stores the pair/array itself is also freed.

Function Return Statements: A return statement can only be present in the body of a non-main
function and is used to return a value from that function. The type of the expression given to the
return statement must match the return type of the function. Once the return statement is executed,
the function is immediately exited.

Exit Statements:

Gap 2. DONE (3 marks)

An exit statement is used to show program termination. When the control flow of the program
reaches this symbol, the program is immediately stopped, and no more instructions are executed. The
exit statement is followed by an expression, which must be an integer, or integer variable between 0-255.
If an integer is given outside of this range, it is wrapped to fit into the range. For example the statement
‘exit -1’ will be wrapped to ‘exit 255’. The integer expression matches with a simple convention of
exit codes:

� ‘0’: Success

� ‘100’: Syntax Error

� ‘200’: Semantic Error

� ‘255’ or ‘-1’: Common General Error

� Other: More exit codes can be adopted at the programmers choice.

Print Statements: There are two types of print command in the WACC language. The ‘print’
command takes an expression and prints the result of its evaluation to the standard output. The
‘println’ command is similar, but additionally prints out a new line afterwards.

The output representation of each expression evaluation depends on the type of the expression. The
behaviour of the print statements for each type of expression is shown in Table 1, along with some
example cases.

Gap 3. Fill in Table 1 (3 marks)

Conditional Branch Statements: A conditional branch statement ‘if’ evaluates an expression and
determines which program path to follow. The statement is given a condition expression, that must be
of type ‘bool’, and two body statements, one for the ‘then’ branch and one for the ‘else’ branch.

If the condition evaluates to ‘true’, then the ‘then’ body statement is executed. Otherwise, the
‘else’ body statement is executed. Each of the program branches is executed in its own scope, which
are denoted by the ‘then’ and ‘else’ tokens and the ‘else’ and ‘fi’ tokens, respectively.

1This is not exactly an expression because it can only appears on the right hand side of an assignment. However, it
gives the best example here.

6

Expression
Type

Behaviour Example
Expression

Example
Output

int Output the integer converted to a decimal
string.

10 “10”

bool Output “true” if the boolean is true and
“false” otherwise.

false “false”

char Output a single-character string. 'c' “c”
string or
char[]

Outputs each character in the array in
succession

“chair” “chair”

Other Array
Types

Printing an array variable gives an address [0, 1, 2] #addrs#

pair Printing a pair gives an address newpair(a, b)1 #addrs#

Table 1: The behaviour of the print statements for each type of expression.

While Loop Statements:

Gap 4. DONE (6 marks)

A while loop statement allows a body of code to be executed repeatedly given a ‘bool’ condition. The
while loop’s body is denoted by ‘do’ and closed with ‘done’. The execution of the while loop’s body only
terminates when the ‘bool’ given to the statement evaluates to ‘false’.

Scoping Statements: A scoping statement introduces a new program scope, which is denoted by the
‘begin’ and ‘end’ tokens.

Sequential Composition:

Gap 5. DONE (2 marks)

Sequention composition is the act of joining two or more statements together with the use of a semicolon
(‘;’). As a statement 〈stat〉 can itself be a composition of two different statements, is it possible to
compose together long chains of instructions. When running, the second statement is executed only
after the first statement has finished. It is conventional, but not essential, to put each statement on a
new line, finishing each line with the semicolon to compose them. It is importnat to note that the final
statement in a composition does not require a semicolon, and adding one will cause a syntax error.

3.6 Expressions

A expression 〈expr〉 consists of a literal (integer, boolean, character, string or pair), a variable, an array
element, a unary expression, a binary expression or an expression enclosed by parenthesis.

We discuss the meaning of each of these expressions in more detail below.
The expressions of the WACC language have been chosen to be side-effect free. This means that

there are no expressions that when declared modify existing data.

Gap 6. Define side-effect free expressions (1 mark)

Integer Literals: An integer literal 〈int-liter〉 consists of a sequence of decimal digits. Optionally, the
sequence can be preceded by a ‘+’ or a ‘-’ symbol.

Boolean Literals: A boolean literal 〈bool-liter〉 is either ‘true’ or ‘false’.

Character Literals: A character literal 〈char-liter〉 is a single ASCII character between two ‘’’ sym-
bols. A ‘\’ can be used to escape the character that immediately follows the ‘\’. The meaning of each
escaped character is shown in Table 2.

Gap 7. DONE (2 marks)

7

Representation ASCII Value Description Symbol
\0 0x00 null terminator NUL
\b 0x08 backspace BS
\t 0x09 tab TAB
\n 0x0a new line LF
\f 0x0c new page FF
\r 0x0d carriage return CR
\" 0x22 double quote ”
\’ 0x27 single quote ’
\\ 0x5C backslash \

Table 2: The escaped-characters available in the WACC language.

Operator Argument Type Return Type Meaning
‘!’ bool bool Logical Not
‘-’ int int Negation

‘len’ T[] int Array Length
‘ord’ char int Ordinal Value
‘chr’ int char Inverse Ordinal Value

Table 3: The unary operators of the WACC language with their types and meanings.

String Literals: A string literal 〈str-liter〉 is az sequence of characters between two ‘"’ symbols. Each
character in the string literal can be escaped in the same way as in character literal.

Pair Literals: The only pair literal 〈pair-liter〉 is ‘null’ which represents a reference that does not
point to any pair. To see how pairs are created, read the ‘newpair’ case of the assignment statement.

Array Literals: Array literals cannot occur directly in expressions, but they do occur in the WACC
language as assignment values. An array literal starts with a ‘[’ token and ends with a ‘]’ token. The
elements of the array (zero or more) are given between these brackets and are separated by ‘,’ tokens.
All elements of an array must be of the same type, so the type of any non-empty array literal can be
statically determined. If, however, an array literal is empty, we allow it to be of any array type. For
example, the array ‘[]’ can be of type ‘int[]’,‘bool[]’, ‘char[]’, etc... depending on the context, but
the array ‘[1]’ must be of type ‘int[]’.

Variables: When a variable expression 〈ident〉 is evaluated it returns the value of that variable. If the
variable is of type ‘T’ then the return type of the expression is also ‘T’.

Array Elements: An array element expression evaluates to return an element from an array. The
expression consists of two sub-expressions, the first of which must be of type ‘T[]’ and the second of
which must be of type ‘int’. The return type of the overall expression is ‘T’.

The first expression is evaluated to find an array ‘a’ and the second is evaluated to find an index ‘i’.
The overall expression returns the element at the index ‘i’ of array ‘a’, that is, ‘a[i]’.

If the array has length l then the index ‘i’ must be between 0 and (l − 1), otherwise the expression
will generate a runtime error.

Unary Operators: A unary operator 〈unary-oper〉 has a single sub-expression. The unary operators
available in the WACC language are shown in Table 3. All unary operators have the same precedence,
they are evaluated from right to left.

Gap 8. Fill in Table 3 (2 marks)

� The ‘!’ operator performs a logical Not operation on the result of evaluating its sub-expression,
returning ‘true’ if the sub-expression evaluates to ‘false’ and vice-versa.

8

Opera-
tor

Prece-
dence

Argument 1
Type

Argument 2
Type

Return
Type

Meaning

‘*’ 1 int int int Multiply
‘/’ 1 int int int Divide
‘%’ 1 int int int Modulus
‘+’ 2 int int int Plus
‘-’ 2 int int int Minus
‘>’ 3 int int bool Greater Than
‘>=’ 3 int int bool Greater Than or

Equal
‘<’ 3 int int bool Less Than
‘<=’ 3 int int bool Less Than or Equal
‘==’ 4 int int bool Equality
‘!=’ 4 int int bool Inequality
‘&&’ 5 bool bool bool Logical And
‘||’ 6 bool bool bool Logical Or

Table 4: The binary operators of the WACC language, with their types and meanings.

� The ‘-’ operator inverts the sign of the evaluation of its sub-expression.

� The ‘len’ operator returns the length of the array referenced by the evaluation of its sub-expression.

� The ‘ord’ operator returns the ASCII ‘int’ representation of the given ‘char’ parameter.

Gap 9. DONE (1 mark)

� The ‘chr’ operator returns the ‘char’ corresponding to the given ‘int’ under ASCII representation.

Gap 10. DONE (1 mark)

Binary Operators: A binary operator is used in in-fix style between two sub-expressions. The bi-
nary operators available in the WACC language are shown in Table 4. The operators have different
precedences, as illustrated in the table, with 1 being the highest and 6 being the lowest.

Gap 11. Fill in Table 4 (2 marks)

� The ‘*’, ‘/’, ‘%’, ‘+’ and ‘-’ operators all have their standard mathematical behaviour, where integer
underflow/overflow results in a runtime error. If the divisor of a division (‘/’) or modulus (‘%’)
operator is evaluated to ‘0’, then this also results in a runtime error. The result of a division
operation is positive if both its dividend and divisor have the same sign, and negative otherwise.
The result of a modulus operation has the same sign as its dividend.

� The ‘>’, ‘>=’, ‘<’ and ‘<=’ operators perform a comparison test on the evaluations of their sub
expressions. They accept expressions of type ‘int’ or ‘char’, but both expressions must have the
same type. The result is ‘true’ if the comparison of the evaluated expressions is true. Otherwise,
the result it ‘false’.

� The ‘==’ operator performs an equality test on the evaluations of its sub-expressions. It accepts
any two expressions of the same type. When applied to expressions of type ‘int’, ‘bool’ or ‘char’,
the result is ‘true’ iff the content of the two arguments are the same. When applied to expressions
of type ‘T[]’ or ‘pair’, the result is ‘true’ iff the two references point to the same object of the
same type. Otherwise, the result is ‘false’.

� The ‘!=’ operator returns the opposite result to the ‘==’ operator.

9

� The ‘&&’ operator performs a logical And operation on the result of evaluating its sub-expressions,
returning ‘true’ if both sub-expressions evaluate to ‘true’ and ‘false’ otherwise.

� The ‘||’ operator performs a logical Or operation on the result of evaluating its sub-expressions,
returning ‘true’ if either sub-expression evaluates to ‘true’ and ‘false’ otherwise.

Parenthesis: We can introduce a pair of parenthesis around an expression to control its evaluation.
The expression in a parenthesis is always evaluated first, regardless of the operator precedence.

3.7 Whitespace and Comments

Whitespace is used in the WACC language to delimit keywords and variables. For example, ‘if a == 13’
denotes the start of an ‘if’ statement with boolean condition ‘a == 13’, whereas ‘ifa == 13’ denotes a
boolean expression comparing the variable ‘ifa’ with the value ‘13’. Any other type of occurrence of
whitespace is ignored by the compiler. Note, in particular, that the code indentation in the example
programs has no meaning, it simply aids readability. Also note that whitespace inside a string or character
literal is preserved by the compiler.

Gap 12. DONE (3 marks)

Comments are entries into the source code that provide no functional meaning. A program with no
comments, will behave exactly the same as the same program full of valid comments. A valid comment
is given by the ‘#’ character followed by any non-EOL symbol, ending at the end of a line. Commends
can be started anywhere in the code, including after a sequential combinatoin symbol (‘;’), but any code
written between a ‘#’ symbol, and the end of that line, is not executed, and discarded by the compiler.

Acknowledgements

The WACC language was developed by Tienchai Wirojsaksaree as part of a UROP placement over the
summer in 2013.

10

	What is WACC?
	WACC Language Syntax
	BNF

	WACC Language Semantics
	Types
	Program Scopes
	Programs
	Function Definitions
	Statements
	Expressions
	Whitespace and Comments

